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A novel Deep Learning approach for multi-model fitting problems
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The Multi-Model Fitting Problem

Multi-Model Fitting: Problem Definition

Given a set of data X = {x1,...,x,} C RY possibly corrupted by noise
and outliers, and a family of geometric models @,
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The Multi-Model Fitting Problem

The Multi-Model Fitting Problem

Given a set of data X = {xq,

., Xn} C R¥ possibly corrupted by noise
and outliers, and a family of geometric models 6, automatically estimate
the models that best explain the data.

models
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The Multi-Model Fitting Problem

Given a set of data X = {x1,...,x,} C RY possibly corrupted by noise
and outliers, and a family of geometric models 6, automatically estimate
the models that best explain the data. Do so by retrieving structures
hidden in data.

O

models
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Applications

Applications J
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Applications: Scan2Bim

Given a scanned point cloud of an interior environment, detect its primary
facility surfaces — such as floors, walls, and ceilings.

Input 3D A . Room Layout .
point Cloud }—}‘ Input Filtering H Wall Detection H Detection Model Generation

Figure: Plant generation with Wall Detection

X C R3,© = planes
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Applications

Applications: Two View Geometry

plane detection

Figure: X € R* © = homographies

epipolar geometry

Figure: X € R* © = fundamental matrices
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Challenges
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Challenges

Multi-Model Fitting Challenges

structures

chicken & egg

models dilemma

6'[/6/7
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Multi-Model Fitting Challenges

Noise Level?
gross outlier >< X .
X ﬁm ‘ Outlier Rate?
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Thesis Objective
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Thesis Objective

Thesis Objective

Train a neural network to perform robust Multi-Model Fitting in an

unsupervised fashion.

data points dimensionality d

—N

number of data points n Input

Rnxd

Figure: High Level Neural Network View

Neural Network

number of models m

—

Output
[0.’ 1]n><m
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Thesis Objective Motivations

Motivations

RANSAC Global Learned

heuristics methods Unsupervised
High Outliers X v v
Speed \/ X \/
Generalization \/ \/ \/
Differentiable X X \/
Non-greedy X \/ ‘/
methods Vincent and

Laganiére, 2001 Isack et al., 2012 Ours
Zuliani et al., 2005

@ Our approach takes inspiration from the work of Probst et al. (2019),
that has proven successful in the single model scenario.

@ No end-to-end Deep Learning solutions proposed so far for
multi-model fitting.
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Motivations
RANSAC-based heuristics: Greediness Problem

B3 e
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<

(a) low noise (b) high noise
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Thesis Objective Results

Results

Experiments have shown that my approach
@ exploits the global signature of data — non-greedy

@ is able to adapt to different noise levels
@ outperforms SEQ-RANSAC at

e high outliers rate in the multiple homographies estimation task
e high noise contamination levels
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Mathematical Formulation

Mathematical Formulation J
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Mathematical Formulation Linear Algebra Background

Multi-Model Consensus Maximization

Definition

Given a set X = {(uj,v;) C R%*+% j =1 ... n} of corresponding
measurements, find the largest m subsets 2; C X', each explained by a
parametric transformation ¢; : R% — R,

m

max Q;
{Ql,..,,Qm}Z| jl

j=1

s.t. Qj = {(ui,vi) € X : d(¢j(uj),vi) <e} Vje{l,....,m}
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Mathematical Formulation Linear Algebra Background

Multi-Model Consensus Maximization

Definition

Given a set X = {(uj,v;) CR%*% j=1 ... n} of corresponding
measurements, find the largest m subsets Q; C X', each explained by a
parametric transformation ¢; : R — R

m
max E 192
{Q1,...,Qm} s

s.t. QJ' ={(uj,v;) € X : d(qu(u,-), V,') <e} Vje{l,...,m}

How do we make it differentiable?
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Linear Algebra Background
The Ideal Z(Q2)

Definition
Being X’ a set of correspondences, the ideal Z(Q2) is the set of
polynomials that vanishes on some samples 2 € X.

Z(Q) == {p(x) € R[x] : p(x) =0, VxeQ}

where
e R[x] :=R[xi,...,xn|q - Ring of multivariate polynomials of degree
<d
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Linear Algebra Background
The Ideal Z(Q2)

Definition
Being X a set of correspondences, the ideal Z(2) is the set of
polynomials that vanishes on some samples Q2 € X.

Z(Q2) .= {p(x) € R[x] : p(x) =0, Vx e Q}

where
@ R[x] :=R[xy,...,xn|q - Ring of multivariate polynomials of degree
<d
The ideal Z(2) contains infinite solutions.
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Mathematical Formulation Linear Algebra Background

The space of valid polynomials Rz

We consider only the set of polynomials R spanned by a known basis B.
Example
if
B:{x2 xy y? x vy 1}
then

Rp = {[a1, a2, a3, a4, a5, 6] - BT, a € R°}
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Mathematical Formulation Linear Algebra Background

The polynomial representation of ¢

The polynomial representation of a model ¢ involves a known number r of
linearly independent equations in Rp that vanish for all x € Q.
Therefore we can state that

dim(Z(Q) NRp) =r
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Mathematical Formulation Linear Algebra Background

The polynomial representation of ¢

The polynomial representation of a model ¢ involves a known number r of
linearly independent equations in Rz that vanish for all x € Q.

Therefore we can state that

dim(Z(Q)NRp) =r

How can we exploit this result?
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Mathematical Formulation Linear Algebra Background

Vandermonde Matrix

Definition
My (2) € R™*t is a matrix with the terms of a geometric progression's
monomials with degree at most d in each row.

Example
° Q= {(xy)}_,
e d=2
e n=3

2 xiy1 ¥ oxa oy 1
My(Q) = |x3 xoy2 Y2 x2 y» 1
X3 xsy3 ¥: x3 y3 1
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Rl Sl eous
Vandermonde Matrix - Property

Definition
The kernel of a matrix A are all the solutions to the linear system Ax = 0.

Theorem

The kernel ker(My(S2)) of the Vandermonde matrix My(2) equals to the
vector space Z(2) N Rp. i.e. all polynomials that are linear combinations
of B and vanish on Q are represented by:

ker(My4(2)) = Z(Q) N Rp
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Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

Definition

Q .
Q% > 19l

s.t. dim(ker(Mg(S2;))) = r Vjie{l,...,m}
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Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

Definition

m
max Z 12|
{le'"va} j=1

s.t. dim(ker(Mg(£2)))) = r Vjie{l,...,m}

Data is possibly corrupted by noise.

28/60



Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

We relax the rank constraint by minimizing the trailing r singular values
Ok of MB:

Definition

@M%, 2 ('Qf‘ Y ok(MB(QJ-»)

j=1 k=s—r
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Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

We relax the rank constraint by minimizing the trailing r singular values
[

Definition

@) 2 ('Qf‘ Y ak(MB(QJ-»)

j=1 k=s—r

NP-hard combinatorial problem, not differentiable.
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Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

Soft assignments 0 < wj; < 1:
Definition

[wi,.. 7Wm]6[0 1]nxm Zl <ZW’:J Z Uk(diag(wj)MB(X))>

k=s—r
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Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

Soft assignments 0 < w;; <1

Definition

S l]nxmz (Zw,d Y Z o (diag( WJ)MB(X)))
Wi,...,.Wm —

i=1 k=s—r

The objective is now differentiable and can serve as an unsupervised loss.

32/60



Mathematical Formulation Loss Formulation

Loss Function

k=0

m r—1
Z <_ mHWJ X)‘|+)‘vanderzas k(d'ag(WJ)MB( ))

@ first term: maximize consensus

@ second term: minimize algebraic error
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Loss Formulation
Loss Function

Penalize column similarity

The neural network should not predict multiple times the same model.

m

0.9 Jo.9 jjo

S
3
©

©

moooroo R
©
mooorRooRm
o

Add term to penalize similarity between columns of Wy.
log(1 -+ [|Wg Wy — 1]]2)
with
a Wy j

Wy = Vje{l,.
I = Twg 2 € oo m)
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Mathematical Formulation Loss Formulation

Loss Function

Avoid zero-columns

W e [0, 1)
Sigmoids W oW; W
—_— > f
S >
X e R 1 PointNet-Seg @
—_— > "
S >
— — | —

Treat each column with equal importance

This term helps the network to treat equally importantly each model

27 (Iwe i (X)l1 — wavg)®

with w,,z being defined as

225 [Iwe i (X))l

m

Wavg =
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Mathematical Formulation Loss Formulation

Loss Function

Complete formulation

m r—1
Z ( - m||wj )||1 + >\vander Z Us—k(diag(wj)MB(X))> +

k=0
Asim log (1 + |[Wg W — 1[]2) +

ST (llwi j ()11 — Wavg)?

m

>\V3I’
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Mathematical Formulation Loss Formulation

Architecture

Complete Architecture

W e [0,1]mm
Sigmoids Wi Wy Wa

2 s | ——| —|
g N | — ]
H [— N [
8 X R PointNet-Seg @

E — | f—]
< — | — s
S [ N [

Figure:

Geometric constraint

on class of models

Vandermonde Matrix

My(X) € R"™**

Unsupervised Learning for Multi-Model Consensus Maximization
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Mathematical Formulation Loss Formulation

Architecture
PointNet-Seg

input mlp (64,64) feature mlp (64,128,1024)

. max mlp

E transform transform pool 1024 (512,256,k)

S | ) < <

;: £ > 2 shared E og shared nx1024
= >

local elinbedding

3x3
transform

matrix
multiply

4 \d .
64x64 v A point features
transform

matrix
multiply

n|x 1088 shared

nx128
nxm

shared

—>
mlp (512,256,128) mlp (128,m)

output scores

Figure: PointNet Segmentation Network
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Results J
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Performance Metrics

Performance was assessed with Accuracy; Inliers Detection Rate; Outliers
Detection Rate; F1-Score; and Geometric distance.

Accuracy — TP+ TN . )
ceuracy = o5 TN 1 FP 1+ FN Geometric Distance = Z [|vi
TP x;eX
IDR = Recall = m
TN
ODR =
TN + FP
TP

e el P
Precision n
Precision - Recall

F1-Score = 2. ———— T
core Precision + Recall
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Eoaire S RS
Competitor - Sequential RANSAC

-2

-3

Sequential RANSAC - Initial state

-2 o 2

Sequential RANSAC - 2nd Model

-2 0 2

Sequential RANSAC - Minimal Sample Set
3 .

2 . v [y

-2 0 2

Sequential RANSAC - Minimal Sample Set
3

-2

-3

-2 0 2

Sequential RANSAC - Removed 1st model
3

-2

-3

Sequential RANSAC - 1st Model

-2 0 2

-2 0 2
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Competitor - Sequential RANSAC
Seq-RANSAC Algorithm

Algorithm 4 Sequential RANSAC

Input: X - a set of observations
Output: * = {Mj, ..., 3} - A set of models
Procedure:
mincost = oo
6" =0
m =0
M = number of models
i =0
k = number of iterations
mss := n randomly selected values from &X'
M model fitted on mss
0= {z; € X|d(vj, M(u;))? <2}
cost =37, eq(d(vy, M(u;)?) + 32, crna e’
if cost < mincost then
mincost = cost

M =M
end if
i=1i+1
Z?i ‘(:iltleﬂ/l* update best model
m=m+1
X=X\Q
end while
return ¢*
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oo o)
Homography Estimation

Definition
Homography. a homography is an invertible mapping h from P? to itself

such that three points x3, x> and x3 lie on the same line if and only if
h(x1), h(x2) and h(x3) do.

An equivalent algebraic definition of a homography is possible, based on
the following result.

Theorem

A mapping h : P? — P? is a homography if and only if there exists a
non-singular 3 x 3 matrix H such that for any point in P? represented by a
vector X it is true that h(x) = Hx.
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Data Generation

door table

-1

-2

-3

Figure: Example of pair of homography correspondences generated from

2 views of objects

+  door
. table
«  outliers

W
p—L

,,_/ﬁf

. table

«  outliers

-2

- -2

Modelnet-40. (a) and (b) show the 3D point clouds from which is obtained the
first and the second homography respectively. (c) shows the generated matches.
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oo o)
Two Homographies fitting

Accuracy Inliers Detection Rate Outliers Detection Rate
Mg Eeoge=2-=" = — e

0.8 1 08 G\J 1 08f B
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0.6 1 06 mq 06 B

I I I I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
outliers outliers outliers

F1 Score Geometric Distance
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Figure: Two Homographies estimation task with increasing outliers rate.
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Three Homographies Fitting

Accuracy Inliers Detection Rate Outliers Detection Rate
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Figure: Three Homographies estimation task with increasing outliers rate.
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Results Multiple Circles Fitting - Increasing outliers

Two Circles Fitting

A more challenging scenario...

Accuracy Inliers Detection Rate Outliers Detection Rate F1 Score
=y —— g = I - I g
e T ] R - S A 5
a5 5 o e
08| 1 08 08| 4 08}
06| 1 06 o 06| q 06f
b
04f 1 04 04} q 0af
0 0 y

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1

Outliers Rate % Outliers Rate % Outliers Rate % Outliers Rate %

Figure: Performance on 2 Circles fitting with increasing outliers rate.
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Multiple Circles Fitting - Increasing outliers
Two Circles Fitting

Model Estimation

all models and outliers model 1

o modell
< e mode2
¥e e outiiers
Y

inlier probability

inlier probability

Figure: Test sample with 60% outliers contamination
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Two Circles Fitting

Comparison

Ground Truth

Ground Truth

mmpnet

mmpnet

Sequential RANSAC

Sequential RANSAC

Figure: Comparison among mmpnet and Sequential RANSAC.

Top row: 60% outliers; bottom row: 70% outliers.
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Two Circles Fitting - Increasing Noise Level

Performance
Accuracy Inliers Detection Rate Outliers Detection Rate F1 Score
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Figure: Increasing level of noise. Top row: 50% outliers; bottom row: 60%
outliers
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Two Circles Fitting - Increasing Noise Level

Comparison

Figure:

noise.

Ground Truth

Ground Truth

Comparison among mmpnet and seqg-ransac. 60% outliers and 9%

mmpnet

mmpnet

Sequential RANSAC

Sequential RANSAC
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The Union Loss

The Union Loss J
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The Union Loss Formulation

Union Loss

Seek the inlier set Q € X for which is maximized the consensus of a
polynomial g representing the union of multiple models.
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The Union Loss Formulation

Union Loss

Seek the inlier set Q € X for which is maximized the consensus of a
polynomial g representing the union of multiple models.
The task reduces to a single model fitting problem.

54/60



The Union Loss Formulation

Fitting the union of two lines in R?

Example

Data is sampled from two lines:
e 51 ={x:a1xy + bixo+ c =0}
o S ={x:axxy+ boxp+ =0}

S1US = {X : (31X1 + bixp +¢c1 = 0) V (32X1 + boxo + ¢ = 0)}

= {X : C1X12 + Cox1X2 + C3X1 + C4X22 + CsXxo + Co = 0}
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The Union Loss Formulation

Formulation of the union

Definition
The union of m homogeneous polynomials with coefficient vectors
B = {by,...,by} is the set of points satisfying at least one element in B
m
qd(x) = H(bij) =clvy(x)=0
j=1

where vg4(x) is the Veronese map of degree d = 3 7", dh .
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Results
Two Circles Fitting

Performance
Accuracy Inliers Detection Rate Outliers Detection Rate F1 Score
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Figure: Performance of u-mmpnet with increasing outliers rate.
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Results
Two Circles Fitting

Test Samples at increasing outlier rates

ampnet
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Conclusions

Conclusions J
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Conclusions

Conclusions

Introduced two novel deep learning approaches for multi-model fitting
problems.
@ advantages
o robustness at high noise contamination
e outperform SEQ-RANSAC at high outliers rate
e execution time independent of data distribution
@ no test-time hyperparameter tuning
@ drawbacks

e number of models m to be known a priori
o difficult to train the network with m > 4 models.
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