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The Multi-Model Fitting Problem

Multi-Model Fitting: Problem Definition

Given a set of data X = {x1, . . . , xn} ⊂ Rd possibly corrupted by noise
and outliers, and a family of geometric models θ,
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The Multi-Model Fitting Problem

The Multi-Model Fitting Problem

Given a set of data X = {x1, . . . , xn} ⊂ Rd possibly corrupted by noise
and outliers, and a family of geometric models θ, automatically estimate
the models that best explain the data.
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The Multi-Model Fitting Problem

The Multi-Model Fitting Problem

Given a set of data X = {x1, . . . , xn} ⊂ Rd possibly corrupted by noise
and outliers, and a family of geometric models θ, automatically estimate
the models that best explain the data. Do so by retrieving structures
hidden in data.
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Applications
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Applications

Applications: Scan2Bim

Given a scanned point cloud of an interior environment, detect its primary
facility surfaces – such as floors, walls, and ceilings.

Figure: Plant generation with Wall Detection

X ⊂ R3,Θ = planes
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Applications

Applications: Two View Geometry

Figure: X ∈ R4,Θ = homographies

Figure: X ∈ R4,Θ = fundamental matrices
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Challenges

Challenges
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Challenges

Multi-Model Fitting Challenges
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Challenges

Multi-Model Fitting Challenges
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Thesis Objective

Thesis Objective

Train a neural network to perform robust Multi-Model Fitting in an
unsupervised fashion.

Figure: High Level Neural Network View

13 / 60



Thesis Objective Motivations

Motivations

Our approach takes inspiration from the work of Probst et al. (2019),
that has proven successful in the single model scenario.

No end-to-end Deep Learning solutions proposed so far for
multi-model fitting.
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Thesis Objective Motivations

RANSAC-based heuristics: Greediness Problem

15 / 60



Thesis Objective Results

Results

Experiments have shown that my approach

exploits the global signature of data → non-greedy

is able to adapt to different noise levels

outperforms Seq-RANSAC at

high outliers rate in the multiple homographies estimation task
high noise contamination levels
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Mathematical Formulation

Mathematical Formulation
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Mathematical Formulation Linear Algebra Background

Multi-Model Consensus Maximization

Definition

Given a set X = {(ui , vi ) ⊆ Rdu+dv , i = 1, . . . , n} of corresponding
measurements, find the largest m subsets Ωj ⊆ X , each explained by a
parametric transformation φj : Rdu → Rdv .

max
{Ω1,...,Ωm}

m∑
j=1

|Ωj |

s.t. Ωj = {(ui , vi ) ∈ X : d
(
φj(ui ), vi

)
< ε} ∀j ∈ {1, . . . ,m}

18 / 60



Mathematical Formulation Linear Algebra Background

Multi-Model Consensus Maximization

Definition

Given a set X = {(ui , vi ) ⊆ Rdu+dv , i = 1, . . . , n} of corresponding
measurements, find the largest m subsets Ωj ⊆ X , each explained by a
parametric transformation φj : Rdu → Rdv .

max
{Ω1,...,Ωm}

m∑
j=1

|Ωj |

s.t. Ωj = {(ui , vi ) ∈ X : d
(
φj(ui ), vi

)
< ε} ∀j ∈ {1, . . . ,m}

How do we make it differentiable?
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Mathematical Formulation Linear Algebra Background

The Ideal I(Ω)

Definition

Being X a set of correspondences, the ideal I(Ω) is the set of
polynomials that vanishes on some samples Ω ∈ X .

I(Ω) := {p(x) ∈ R[x ] : p(x) = 0, ∀x ∈ Ω}

where

R[x ] := R[x1, . . . , xn]d - Ring of multivariate polynomials of degree
≤ d
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Mathematical Formulation Linear Algebra Background

The Ideal I(Ω)

Definition

Being X a set of correspondences, the ideal I(Ω) is the set of
polynomials that vanishes on some samples Ω ∈ X .

I(Ω) := {p(x) ∈ R[x ] : p(x) = 0, ∀x ∈ Ω}

where

R[x ] := R[x1, . . . , xn]d - Ring of multivariate polynomials of degree
≤ d

The ideal I(Ω) contains infinite solutions.
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Mathematical Formulation Linear Algebra Background

The space of valid polynomials RB

We consider only the set of polynomials RB spanned by a known basis B.

Example

if
B =

{
x2 xy y2 x y 1

}
then

RB := {[a1, a2, a3, a4, a5, a6] · BT , a ∈ R6}
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Mathematical Formulation Linear Algebra Background

The polynomial representation of φ

The polynomial representation of a model φ involves a known number r of
linearly independent equations in RB that vanish for all x ∈ Ω.
Therefore we can state that

dim(I(Ω) ∩RB) = r
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Mathematical Formulation Linear Algebra Background

The polynomial representation of φ

The polynomial representation of a model φ involves a known number r of
linearly independent equations in RB that vanish for all x ∈ Ω.
Therefore we can state that

dim(I(Ω) ∩RB) = r

How can we exploit this result?
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Mathematical Formulation Linear Algebra Background

Vandermonde Matrix

Definition

Md(Ω) ∈ Rn×t is a matrix with the terms of a geometric progression’s
monomials with degree at most d in each row.

Example

Ω =
{

(xi , yi )
}n
i=0

d = 2

n = 3

M2(Ω) =

x2
1 x1y1 y2

1 x1 y1 1
x2

2 x2y2 y2
2 x2 y2 1

x2
3 x3y3 y2

3 x3 y3 1


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Mathematical Formulation Linear Algebra Background

Vandermonde Matrix - Property

Definition

The kernel of a matrix A are all the solutions to the linear system A~x = 0.

Theorem

The kernel ker(Md(Ω)) of the Vandermonde matrix Md(Ω) equals to the
vector space I(Ω) ∩RB. i.e. all polynomials that are linear combinations
of B and vanish on Ω are represented by:

ker(Md(Ω)) = I(Ω) ∩RB
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Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

Definition

max
{Ω1,...,Ωm}

m∑
j=1

|Ωj |

s.t. dim(ker(MB(Ωj))) = r ∀j ∈ {1, . . . ,m}
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Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

Definition

max
{Ω1,...,Ωm}

m∑
j=1

|Ωj |

s.t. dim(ker(MB(Ωj))) = r ∀j ∈ {1, . . . ,m}

Data is possibly corrupted by noise.
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Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

We relax the rank constraint by minimizing the trailing r singular values
σk of MB:

Definition

max
{Ω1,...,Ωm}

m∑
j=1

(
|Ωj | − λ

s∑
k=s−r

σk(MB(Ωj))

)
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Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

We relax the rank constraint by minimizing the trailing r singular values
σk :

Definition

max
{Ω1,...,Ωm}

m∑
j=1

(
|Ωj | − λ

s∑
k=s−r

σk(MB(Ωj))

)

NP-hard combinatorial problem, not differentiable.
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Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

Soft assignments 0 ≤ wij ≤ 1:

Definition

max
[w1,...,wm]∈[0,1]n×m

m∑
j=1

( n∑
i=1

wi ,j − λ
s∑

k=s−r
σk(diag(wj)MB(X ))

)
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Mathematical Formulation Loss Formulation

Reformulation of Multi-Model Consensus Maximization

Soft assignments 0 ≤ wij ≤ 1

Definition

max
[w1,...,wm]∈[0,1]n×m

m∑
j=1

( n∑
i=1

wi ,j − λ
s∑

k=s−r
σk(diag(wj)MB(X ))

)

The objective is now differentiable and can serve as an unsupervised loss.
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Mathematical Formulation Loss Formulation

Loss Function

L(θ,X ) =
m∑
j

(
− λin||wj(X )||+ λvander

r−1∑
k=0

σs−k(diag(wj)MB(X )

)

first term: maximize consensus

second term: minimize algebraic error
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Mathematical Formulation Loss Formulation

Loss Function
Penalize column similarity

The neural network should not predict multiple times the same model.

Add term to penalize similarity between columns of Wθ.

log(1 + ||ŴT
θ Ŵθ − I ||2)

with
ŵθ,j =

wθ,j

||wθ,j ||2
∀j ∈ {1, . . . ,m}
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Mathematical Formulation Loss Formulation

Loss Function
Avoid zero-columns

This term helps the network to treat equally importantly each model∑m
j (||wθ,j(X )||1 − wavg )2

m
with wavg being defined as

wavg =

∑m
j ||wθ,j(X )||1

m
.
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Mathematical Formulation Loss Formulation

Loss Function
Complete formulation

L(θ,X ) =
m∑
j

(
− λin||wj(X )||1 + λvander

r−1∑
k=0

σs−k
(
diag(wj)MB(X )

))
+

λsim log(1 + ||ŴT
θ Ŵθ − I ||2) +

λvar

∑m
j (||wθ,j(X )||1 − wavg )2

m

36 / 60



Mathematical Formulation Loss Formulation

Architecture
Complete Architecture

Figure: Unsupervised Learning for Multi-Model Consensus Maximization
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Mathematical Formulation Loss Formulation

Architecture
PointNet-Seg

Figure: PointNet Segmentation Network
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Results

Results
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Results Metrics

Performance Metrics

Performance was assessed with Accuracy; Inliers Detection Rate; Outliers
Detection Rate; F1-Score; and Geometric distance.
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Results Competitor - Sequential RANSAC

Competitor - Sequential RANSAC
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Results Competitor - Sequential RANSAC

Seq-RANSAC Algorithm
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Results Multiple Homographies Estimation

Homography Estimation

Definition

Homography. a homography is an invertible mapping h from P2 to itself
such that three points x1, x2 and x3 lie on the same line if and only if
h(x1), h(x2) and h(x3) do.

An equivalent algebraic definition of a homography is possible, based on
the following result.

Theorem

A mapping h : P2 → P2 is a homography if and only if there exists a
non-singular 3× 3 matrix H such that for any point in P2 represented by a
vector x it is true that h(x) = Hx.
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Results Multiple Homographies Estimation

Data Generation

Figure: Example of pair of homography correspondences generated from
Modelnet-40. (a) and (b) show the 3D point clouds from which is obtained the
first and the second homography respectively. (c) shows the generated matches.
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Results Multiple Homographies Estimation

Two Homographies fitting
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Figure: Two Homographies estimation task with increasing outliers rate.
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Results Multiple Homographies Estimation

Three Homographies Fitting
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Figure: Three Homographies estimation task with increasing outliers rate.
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Results Multiple Circles Fitting - Increasing outliers

Two Circles Fitting

A more challenging scenario...
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Figure: Performance on 2 Circles fitting with increasing outliers rate.
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Results Multiple Circles Fitting - Increasing outliers

Two Circles Fitting
Model Estimation

Figure: Test sample with 60% outliers contamination
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Results Multiple Circles Fitting - Increasing outliers

Two Circles Fitting
Comparison

Figure: Comparison among mmpnet and Sequential RANSAC.
Top row: 60% outliers; bottom row: 70% outliers.
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Results Multiple Circles Fitting - Increasing Noise Level

Two Circles Fitting - Increasing Noise Level
Performance
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Figure: Increasing level of noise. Top row: 50% outliers; bottom row: 60%
outliers
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Results Multiple Circles Fitting - Increasing Noise Level

Two Circles Fitting - Increasing Noise Level
Comparison

Figure: Comparison among mmpnet and seq-ransac. 60% outliers and 9%
noise.
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The Union Loss

The Union Loss
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The Union Loss Formulation

Union Loss

Seek the inlier set Ω ∈ X for which is maximized the consensus of a
polynomial q representing the union of multiple models.

53 / 60



The Union Loss Formulation

Union Loss

Seek the inlier set Ω ∈ X for which is maximized the consensus of a
polynomial q representing the union of multiple models.
The task reduces to a single model fitting problem.
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The Union Loss Formulation

Fitting the union of two lines in R2

Example

Data is sampled from two lines:

S1 = {x : a1x1 + b1x2 + c1 = 0}
S2 = {x : a2x1 + b2x2 + c2 = 0}

S1 ∪ S2 = {x : (a1x1 + b1x2 + c1 = 0) ∨ (a2x1 + b2x2 + c2 = 0)}
= {x : c1x

2
1 + c2x1x2 + c3x1 + c4x

2
2 + c5x2 + c6 = 0}
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The Union Loss Formulation

Formulation of the union

Definition

The union of m homogeneous polynomials with coefficient vectors
B = {b1, . . . ,bm} is the set of points satisfying at least one element in B

qd(x) =
m∏
j=1

(bT
j x) = cTd vd(x) = 0

where vd(x) is the Veronese map of degree d =
∑m

j=1 dbj
.
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The Union Loss Results

Two Circles Fitting
Performance
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Figure: Performance of u-mmpnet with increasing outliers rate.
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The Union Loss Results

Two Circles Fitting
Test Samples at increasing outlier rates
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Conclusions

Conclusions
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Conclusions

Conclusions

Introduced two novel deep learning approaches for multi-model fitting
problems.

advantages

robustness at high noise contamination
outperform seq-ransac at high outliers rate
execution time independent of data distribution
no test-time hyperparameter tuning

drawbacks

number of models m to be known a priori
difficult to train the network with m ≥ 4 models.
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